Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part III: Assimilation of Real World Reanalysis
Publication Year
2020
Type
Journal Article
Abstract
Recent studies proposed LACC (leading averaged coupled covariance) as an effective strongly coupled data assimilation (SCDA) method to improve the coupled state estimation over weakly coupled data assimilation (WCDA) in a coupled general circulation model (CGCM). This SCDA method, however, has been previously evaluated only in the perfect model scenario. Here, as a further step towards evaluating LACC for real world data assimilation, LACC is evaluated for the assimilation of reanalysis data in a CGCM. Several criterions are used to evaluate LACC against the benchmark WCDA. It is shown that despite significant model bias, LACC can improve the coupled state estimation over WCDA. Compared to WCDA, LACC increases the globally averaged anomaly correlation coefficients (ACCs) of sea surface temperature (SST) by 0.036 and atmosphere temperature at the bottom level (T s ) by 0.058. However, there also exist regions where WCDA outperforms LACC. Although the reduction in the anomaly root-mean-square error (RMSE) is not as consistently clear as the increase in ACC, LACC can largely correct the biased model climatology.
Journal
Monthly Weather Review
Pages
MWR–D–19–0304.1
Date Published
04/2020
ISSN Number
0027-0644