Publications

2020

Abstract The next-generation seasonal prediction system is built as part of the Seamless System for Prediction and EArth System Research (SPEAR) at the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA). SPEAR is an effort to develop a seamless system for prediction and research across time scales. The ensemble-based ocean data assimilation (ODA) system is updated for Modular Ocean Model Version 6 (MOM6), the ocean component of SPEAR. Ocean initial conditions for seasonal predictions, as well as an ocean state estimation, are produced by the MOM6 ODA system in coupled SPEAR models. Initial conditions of the atmosphere, land, and sea ice components for seasonal predictions are constructed through additional nudging experiments in the same coupled SPEAR models. A bias correction scheme called ocean tendency adjustment (OTA) is applied to coupled model seasonal predictions to reduce model drift. OTA applies the climatological temperature and salinity increments obtained from ODA as three-dimensional tendency terms to the MOM6 ocean component of the coupled SPEAR models. Based on preliminary retrospective seasonal forecasts, we demonstrate that OTA reduces model drift—especially sea surface temperature (SST) forecast drift—in coupled model predictions and improves seasonal prediction skill for applications such as El Niño–Southern Oscillation (ENSO).
We document the development and simulation characteristics of the next generation modeling system for seasonal to decadal prediction and projection at the Geophysical Fluid Dynamics Laboratory (GFDL). SPEAR (Seamless System for Prediction and EArth System Research) is built from component models recently developed at GFDL—the AM4 atmosphere model, MOM6 ocean code, LM4 land model, and SIS2 sea ice model. The SPEAR models are specifically designed with attributes needed for a prediction model for seasonal to decadal time scales, including the ability to run large ensembles of simulations with available computational resources. For computational speed SPEAR uses a coarse ocean resolution of approximately 1.0° (with tropical refinement). SPEAR can use differing atmospheric horizontal resolutions ranging from 1° to 0.25°. The higher atmospheric resolution facilitates improved simulation of regional climate and extremes. SPEAR is built from the same components as the GFDL CM4 and ESM4 models but with design choices geared toward seasonal to multidecadal physical climate prediction and projection. We document simulation characteristics for the time mean climate, aspects of internal variability, and the response to both idealized and realistic radiative forcing change. We describe in greater detail one focus of the model development process that was motivated by the importance of the Southern Ocean to the global climate system. We present sensitivity tests that document the influence of the Antarctic surface heat budget on Southern Ocean ventilation and deep global ocean circulation. These findings were also useful in the development processes for the GFDL CM4 and ESM4 models.
Recent studies proposed LACC (leading averaged coupled covariance) as an effective strongly coupled data assimilation (SCDA) method to improve the coupled state estimation over weakly coupled data assimilation (WCDA) in a coupled general circulation model (CGCM). This SCDA method, however, has been previously evaluated only in the perfect model scenario. Here, as a further step towards evaluating LACC for real world data assimilation, LACC is evaluated for the assimilation of reanalysis data in a CGCM. Several criterions are used to evaluate LACC against the benchmark WCDA. It is shown that despite significant model bias, LACC can improve the coupled state estimation over WCDA. Compared to WCDA, LACC increases the globally averaged anomaly correlation coefficients (ACCs) of sea surface temperature (SST) by 0.036 and atmosphere temperature at the bottom level (T s ) by 0.058. However, there also exist regions where WCDA outperforms LACC. Although the reduction in the anomaly root-mean-square error (RMSE) is not as consistently clear as the increase in ACC, LACC can largely correct the biased model climatology.

2018

The extratropical influence on the observed events of El Niño–Southern Oscillation (ENSO) variability from 1948 to 2015 is assessed by constraining the extratropical atmospheric variability in a coupled general circulation model (CGCM) using the Regional Coupled Data Assimilation (RCDA) method. The ensemble-mean ENSO response to extratropical atmospheric forcing, which is systematically and quantitatively studied through a series of RCDA experiments, indicates robust extratropical influence on some observed ENSO events. Furthermore, an event-by-event quantitative analysis shows significant differences of the extratropical influence among the observed ENSO events, both in its own strength and relation to tropical precursor such as the equatorial Pacific heat content anomaly. This study provides the first dynamic quantitative assessment of the extratropical influence on observed ENSO variability on an event-by-event basis.
We present a theoretical study on local and remote responses of atmosphere and ocean meridional heat transports (AHT and OHT, respectively) to climate forcing in a coupled energy balance model. We show that, in general, a surface heat flux forces opposite AHT and OHT responses in the so-called compensation response, while a net heat flux into the coupled system forces AHT and OHT responses of the same direction in the so-called collaboration response. Furthermore, unless the oceanic thermohaline circulation is significantly changed, a remote climate response far away from the forcing region tends to be dominated by the collaboration response, because of the effective propagation of a coupled ocean–atmosphere energy transport mode of collaboration structure. The relevance of our theory to previous CGCM experiments is also discussed. Our theoretical result provides a guideline for understanding of the response of heat transports and the associated climate changes.

2017

The particle filter (PF) and the ensemble Kalman filter (EnKF) are two promising and popularly adopted types of ensemble‐based data assimilation methods for paleoclimate reconstruction. However, no systematic comparison between them has been attempted. We compare these two uncertainty based methods in pseudoproxy experiments where synthetic seasonal mean sea surface temperature observations are assimilated. Their skills are evaluated with regards to local, hemispherically averaged and globally averaged analysis error, and their ability to capture large‐scale modes of variability. It is found that the EAKF (Ensemble Adjustment Kalman filter, a variant of EnKF) performs better than the PF with only one third of the ensemble size, despite PF's theoretical superiority in allowing for non‐Gaussian statistics and nonlinear dynamics. The success of the EAKF is attributed to the facts that (1) Gaussian assumption is somewhat appropriate for this application; (2) The EAKF is less sensitive to sampling errors than the PF due to the different methodological natures. Sixteen members are enough to estimate accurate covariance for the EAKF, but 48 (even 96) members still underrepresent the state space of high‐dimensional system for the PF. Our study highlights the importance of a large localization radius in the application of the EnKF to paleoclimate reconstruction due to the sparse proxy network and suggests that additional techniques, such as localization or clustered particle filter, are needed to improve the PF for paleoclimate reconstruction, in addition to the simple importance resampling currently adopted by most research.

The tropical bias of double-Intertropical Convergence Zone (ITCZ) has been a persistent feature in global climate models. It remains unclear how much of it is attributed to local and remote processes, respectively. Here we assess the extratropical influence on the tropical bias in a coupled general circulation model dynamically, systematically, and quantitatively using the Regional Coupled Data Assimilation (RCDA) method. RCDA experiments show that the model's double-ITCZ bias is improved systematically when sea surface temperature, air temperature, and wind are corrected toward real-world data from the extratropics into the tropics progressively. Quantitatively, the tropical asymmetry bias in precipitation and surface temperature is reduced by 40% due to extratropical impact from outside of ~25°. Coupled dynamics, as well as atmospheric and oceanic processes, play important roles in this extratropical-to-tropical teleconnection. Energetic analysis of cross-equatorial atmospheric energy transport and equatorial net energy input are used to explain the changes in the precipitation bias.
The control of extratropical atmospheric variability on ENSO variability is studied in a coupled general circulation model (CGCM) utilizing an ensemble-based coupled data assimilation (CDA) method in the perfect-model framework. Assimilation is limited to the desired model components (e.g. atmosphere) and spatial areas (e.g. the extratropics) to study the ensemble-mean model response (e.g. tropical response to “observed” extratropical atmospheric variability). The CDA provides continuously “corrected” extratropical atmospheric forcing and boundary conditions for the tropics and the use of ensemble optimizes the observational forcing signal over internal variability in the model component or region without assimilation. The experiments demonstrate significant control of extratropical atmospheric forcing on ENSO variability in the CGCM. When atmospheric “observations” are assimilated only poleward of 20° in both hemispheres, most ENSO events in the “observation” are reproduced and the error of the Nino3.4 index is reduced by over 40 % compared to the ensemble control experiment that does not assimilate any observations. Further experiments with the assimilation in each hemisphere show that the forced ENSO variability is contributed roughly equally and independently by the Southern and Northern Hemisphere extratropical atmosphere. Further analyses of the ENSO events in the southern hemisphere forcing experiment reveal robust precursors in both the extratropical atmosphere over southeastern Pacific and equatorial Pacific thermocline, consistent with previous studies of the South Pacific Meridional Mode and the discharge-recharge paradigm, respectively. However, composite analyses based on each precursor show that neither precursor alone is sufficient to trigger ENSO onset by itself and therefore neither alone could serve as a reliable predictor. Additional experiments with northern hemisphere forcing, ocean assimilation or different latitudes are also performed.

2016

This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system. The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution. A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted. The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated. Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix. The results show that when the reanalysis is assimilated directly as independent observations, the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16% in the perfect model framework; in the biased model case, the increase is less than 22%. This result is robust with sufficient ensemble size and reasonable atmospheric observation quality (e.g., frequency, noisiness, and density). If the observation is overly noisy, infrequent, sparse, or the ensemble size is insufficiently small, the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling. The results from different assimilation schemes highlight the importance of two factors: accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member, which are crucial for the analysis quality of the substitution experiment.

2015

This paper uses a fully coupled general circulation model (CGCM) to study the leading averaged coupled covariance (LACC) method in a strongly coupled data assimilation (SCDA) system. The previous study in a simple coupled climate model has shown that, by calculating the coupled covariance using the leading averaged atmospheric states, the LACC method enhances the signal-to-noise ratio and improves the analysis quality of the slow model component compared to both the traditional weakly coupled data assimilation without cross-component adjustments (WCDA) and the regular SCDA using the simultaneous coupled covariance (SimCC).Here in Part II, the LACC method is tested with a CGCM in a perfect-model framework. By adding the observational adjustments from the low-level atmosphere temperature to the sea surface temperature (SST), the SCDA using LACC significantly reduces the SST error compared to WCDA over the globe; it also improves from the SCDA using SimCC, which performs better than the WCDA only in ...
This paper studies a new leading averaged coupled covariance (LACC) method for the strongly coupled data assimilation (SCDA). The SCDA not only uses the coupled model to generate the forecast and assimilate observations into multiple model components like the weakly coupled version (WCDA), but also applies a cross update using the coupled covariance between variables from different model components. The cross update could potentially improve the balance and quality of the analysis, but its implementation has remained a great challenge in practice because of different time scales between model components. In a typical extratropical coupled system, the ocean–atmosphere correlation shows a strong asymmetry with the maximum correlation occurring when the atmosphere leads the ocean by about the decorrelation time of the atmosphere. The LACC method utilizes such asymmetric structure by using the leading forecasts and observations of the fast atmospheric variable for cross update, therefore, increasing t...

2014

Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after \~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parameter estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of ...
Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. For a complex system as a coupled ocean-atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. Here, we propose an adaptive spatial average (ASA) algorithm to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; the “good” values are then averaged to give the final global uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.

2012

Volatility series (defined as the magnitude of the increments between successive elements) of five different meteorological variables over China are analyzed by means of detrended fluctuation analysis (DFA for short). Universal scaling behaviors are found in all volatility records, whose scaling exponents take similar distributions with similar mean values and standard deviations. To reconfirm the relation between long-range correlations in volatility and nonlinearity in original series, DFA is also applied to the magnitude records (defined as the absolute values of the original records). The results clearly indicate that the nonlinearity of the original series is more pronounced in the magnitude series. ?? 2012 Elsevier B.V. All rights reserved.